A short proof of the Buchstaber-Rees theorem.

نویسندگان

  • H M Khudaverdian
  • Th Th Voronov
چکیده

We give a short proof of the Buchstaber-Rees theorem concerning symmetric powers. The proof is based on the notion of a formal characteristic function of a linear map of algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

Groups with one conjugacy class of non-normal subgroups‎ - ‎a short proof

For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.

متن کامل

On Generalized Symmetric Powers and a Generalization of Kolmogorov–gelfand–buchstaber–rees Theory

In 1939, Gelfand and Kolmogorov published a paper [4], where they showed that for a (compact Hausdorff) topological space X, homomorphisms of the algebra of continuous functions C(X) to numbers are in a one-to-one correspondence with points of X. Paper [4] is famous for giving birth to the theory of normed rings. However, it is worth stressing that the Gelfand–Kolmogorov theorem may be viewed a...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

Operators on superspaces and generalizations of the Gelfand–Kolmogorov theorem

Abstract. Gelfand and Kolmogorov in 1939 proved that a compact Hausdorff topological space X can be canonically embedded into the infinite-dimensional vector space C(X)∗, the dual space of the algebra of continuous functions C(X), as an “algebraic variety", specified by an infinite system of quadratic equations. Buchstaber and Rees have recently extended this to all symmetric powers Symn(X) usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 369 1939  شماره 

صفحات  -

تاریخ انتشار 2011